Approximations of the Neumann Laplacian in nonuniformly collapsing strips

César R. de Oliveira

UFSCar

QMath13 - Atlanta

César R. de Oliveira UFSCar

Nonuniformly Collapsing

QMath13 – Atlanta 1 / 25

1

590

・ロト ・回ト ・ヨト ・ヨト

1 Sources

2 Collapsing regions

8 Effective operator

Uniformly collapsing approximations

5 Examples

- 12

590

イロト イヨト イヨト イヨト

Sources

- R. Bedoya, C. R. de Oliveira & A. A. Verri: Complex Γ-convergence and magnetic Dirichlet Laplacian in bounded thin tubes. J. Spectr. Theory 4 (2014) 621–642
- C. R. de Oliveira & A. A. Verri: On the Neumann Laplacian in nonuniformly collapsing strips. Preprint.
- L. Friedlander & M. Solomyak: On the spectrum of the Dirichlet Laplacian in a narrow infinite strip. Amer. Math. Soc. Transl. 225 (2008) 103–116
- J. K. Hale & G. Raugel: Reaction-diffusion equation in thin domains. J. Math. pures et appl. 71 (1992) 33–95

SOR

イロト イヨト イヨト イヨト

2 Collapsing regions

3 Effective operator

Uniformly collapsing approximations

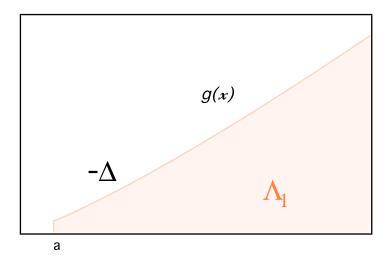
6 Examples

1

590

(日) (四) (王) (王) (王)

Initial

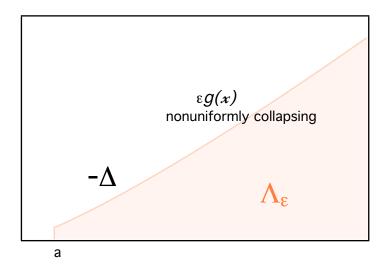


César R. de Oliveira UFSCar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで QMath13 – Atlanta

5 / 25

Initial



6 / 25

•• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

••• Conditions on g: (c1) C² function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and j'(x) are bounded.

イロト イヨト イヨト イヨト

•• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

••• Conditions on g: (c1) C² function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and j'(x) are bounded.

イロト イヨト イヨト イヨト

•• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

Conditions on g:
(c1) C² function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and j'(x) are bounded.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ つく⊙

•• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

• Oralitions on g:
(c1) C² function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and j'(x) are bounded.

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへの

•• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

• • Conditions on g:
(c1) C² function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and j'(x) are bounded.

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへの

The region of interest is

$$\Lambda_{\varepsilon} := \left\{ (x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty) \right\},\$$

and the quadratic form (Neumann Laplacian)

$$m_{\varepsilon}(v) = \int_{\Lambda_{\varepsilon}} |\nabla v|^2 \mathrm{d}x, \quad \mathrm{dom}\, m_{\varepsilon} = H^1(\Lambda_{\varepsilon}).$$

After changes of variables, $m_{\varepsilon}(v)$ is cast as

$$n_{\varepsilon}(\varphi) := \int_{Q} \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \, \varphi_{y} \frac{g'}{g} \right|^{2} + \frac{|\varphi_{y}|^{2}}{\varepsilon^{2} g^{2}} \right) \, \mathrm{d}x \mathrm{d}y,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_{\varepsilon}(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_{Q} \left| \varphi' - \frac{g'}{2g} \varphi \right|^{2} \mathrm{d}x \mathrm{d}y, & \text{if } \varphi_{y} = 0, \\ \infty, & \text{if } \varphi_{y} \neq 0. \end{cases}$$

Let S_{ε} and S be the operators associated with n_{ε} and n, respectively.

イロト イロト イヨト イヨト 三日

The region of interest is

$$\Lambda_{\varepsilon} := \left\{ (x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty) \right\},\$$

and the quadratic form (Neumann Laplacian)

$$m_{\varepsilon}(v) = \int_{\Lambda_{\varepsilon}} |\nabla v|^2 \mathrm{d}x, \quad \mathrm{dom}\, m_{\varepsilon} = H^1(\Lambda_{\varepsilon}).$$

After changes of variables, $m_{\varepsilon}(v)$ is cast as

$$n_{\varepsilon}(\varphi) := \int_{Q} \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \, \varphi_{y} \frac{g'}{g} \right|^{2} + \frac{|\varphi_{y}|^{2}}{\varepsilon^{2} g^{2}} \right) \, \mathrm{d}x \mathrm{d}y,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_{\varepsilon}(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_{Q} \left| \varphi' - \frac{g'}{2g} \varphi \right|^{2} \mathrm{d}x \mathrm{d}y, & \text{if } \varphi_{y} = 0, \\ \infty, & \text{if } \varphi_{y} \neq 0. \end{cases}$$

Let S_{ε} and S be the operators associated with n_{ε} and n, respectively.

César R. de Oliveira UFSCar

The region of interest is

$$\Lambda_{\varepsilon} := \left\{ (x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty) \right\},\$$

and the quadratic form (Neumann Laplacian)

$$m_{\varepsilon}(v) = \int_{\Lambda_{\varepsilon}} |\nabla v|^2 \mathrm{d}x, \quad \mathrm{dom}\, m_{\varepsilon} = H^1(\Lambda_{\varepsilon}).$$

After changes of variables, $m_{\varepsilon}(v)$ is cast as

$$n_{\varepsilon}(\varphi) := \int_{Q} \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \, \varphi_{y} \frac{g'}{g} \right|^{2} + \frac{\left| \varphi_{y} \right|^{2}}{\varepsilon^{2} g^{2}} \right) \, \mathrm{d}x \mathrm{d}y,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_{\varepsilon}(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_{Q} \left| \varphi' - \frac{g'}{2g} \varphi \right|^{2} \mathrm{d}x \mathrm{d}y, & \text{if } \varphi_{y} = 0, \\ \infty, & \text{if } \varphi_{y} \neq 0. \end{cases}$$

Let S_{ε} and S be the operators associated with n_{ε} and n, respectively.

The region of interest is

$$\Lambda_{\varepsilon} := \left\{ (x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty) \right\},\$$

and the quadratic form (Neumann Laplacian)

$$m_{\varepsilon}(v) = \int_{\Lambda_{\varepsilon}} |\nabla v|^2 \mathrm{d}x, \quad \mathrm{dom}\, m_{\varepsilon} = H^1(\Lambda_{\varepsilon}).$$

After changes of variables, $m_{\varepsilon}(v)$ is cast as

$$n_{\varepsilon}(\varphi) := \int_{Q} \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \, \varphi_{y} \frac{g'}{g} \right|^{2} + \frac{|\varphi_{y}|^{2}}{\varepsilon^{2} g^{2}} \right) \, \mathrm{d}x \mathrm{d}y,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_{\varepsilon}(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_{Q} \left| \varphi' - \frac{g'}{2g} \varphi \right|^{2} \mathrm{d}x \mathrm{d}y, & \text{if } \varphi_{y} = 0, \\ \infty, & \text{if } \varphi_{y} \neq 0. \end{cases}$$

Let S_{ε} and S be the operators associated with n_{ε} and n, respectively.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへの

Let
$$\mathcal{L} := \{\varphi(x, y) = w(x)1 \mid w \in L^2([a, \infty))\}.$$

Theorem (1) (by Kato-Robinson Theorem)

For all $f \in L^2(Q)$ one has, as $\varepsilon \to 0$, $\left\| S_{\varepsilon}^{-1} f - (S^{-1} \oplus 0) f \right\| \longrightarrow$

where 0 is the null operator on \mathcal{L}^{\perp} .

DQC

Let
$$\mathcal{L} := \{\varphi(x, y) = w(x)1 \mid w \in L^2([a, \infty))\}.$$

Theorem (1) (by Kato-Robinson Theorem)

For all $f \in L^2(Q)$ one has, as $\varepsilon \to 0$, $\left\|S_{\varepsilon}^{-1}f - (S^{-1} \oplus 0)f\right\| \longrightarrow 0$,

where 0 is the null operator on \mathcal{L}^{\perp} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

2 Collapsing regions

3 Effective operator

Uniformly collapsing approximations

5 Examples

César R. de Oliveira UFSCar

Nonuniformly Collapsing

QMath13 – Atlanta 10 / 25

3

590

(日) (四) (王) (王) (王)

<u>The goal now is to characterize S</u>: for this we need (c2), i.e., bounded $j = \frac{g'}{2q}$ and j'.

Theorem (2)

For g as above, we have

$$(Sw)(x) := -w''(x) + \varrho(x)w(x),$$

with $\varrho(x) := j^2(x) + j'(x)$ and a Robin condition at the end point a, that is, $\operatorname{dom} S = \{ w \in H^2([a,\infty)) \mid j(a) \, w(a) = w'(a) \}.$

イロト イヨト イヨト イヨト

<u>The goal now is to characterize S</u>: for this we need (c2), i.e., bounded $j = \frac{g'}{2q}$ and j'.

Theorem (2)

For g as above, we have

 $(Sw)(x) := -w''(x) + \varrho(x)w(x),$

with $\varrho(x) := j^2(x) + j'(x)$ and a Robin condition at the end point a, that is, $\operatorname{dom} S = \{ w \in H^2([a,\infty)) \mid j(a) \ w(a) = w'(a) \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● ○○○

<u>The goal now is to characterize S</u>: for this we need (c2), i.e., bounded $j = \frac{g'}{2q}$ and j'.

Theorem (2)

For g as above, we have

$$(Sw)(x) := -w''(x) + \varrho(x)w(x),$$

with $\varrho(x) := j^2(x) + j'(x)$ and a Robin condition at the end point a, that is,

dom
$$S = \{ w \in H^2([a, \infty)) \mid j(a) w(a) = w'(a) \}.$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

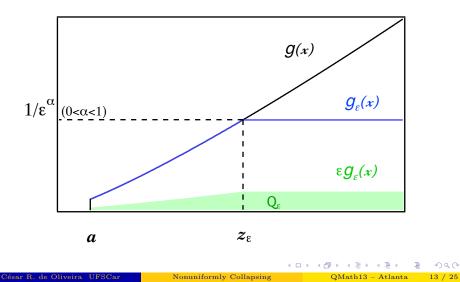
5 Examples

590

12 / 25

Diverging region

Second main goal: finding uniformly collapsing regions Q_ε whose effective operator coincides with S.



Pick bounded functions $g_{\varepsilon} : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_{\varepsilon}$ (uniformly).

Recall that Q_{ε} denotes the region below $\varepsilon g_{\varepsilon}(x)$. Consider the Neumann quadratic form

$$f_{\varepsilon}(\psi) = \int_{Q_{\varepsilon}} |\nabla \psi|^2 \, \mathrm{d}x \mathrm{d}y, \qquad \mathrm{dom} \, f_{\varepsilon} = H^1(Q_{\varepsilon}).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_{\varepsilon}(\psi) = \int_{Q} \left(\left| \psi' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}}\psi - y\frac{g'_{\varepsilon}}{g_{\varepsilon}}\psi_{y} \right|^{2} + \frac{|\psi_{y}|^{2}}{\varepsilon^{2}g_{\varepsilon}^{2}} \right) \,\mathrm{d}x\mathrm{d}y,\tag{1}$$

dom $h_{\varepsilon} = H^1(Q) \subset L^2(Q)$. Denote by H_{ε} the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.

500

Pick bounded functions $g_{\varepsilon} : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_{\varepsilon}$ (uniformly).

Recall that Q_{ε} denotes the region below $\varepsilon g_{\varepsilon}(x)$. Consider the Neumann quadratic form

$$f_{\varepsilon}(\psi) = \int_{Q_{\varepsilon}} |\nabla \psi|^2 \, \mathrm{d}x \mathrm{d}y, \qquad \mathrm{dom} \, f_{\varepsilon} = H^1(Q_{\varepsilon}).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_{\varepsilon}(\psi) = \int_{Q} \left(\left| \psi' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}}\psi - y\frac{g'_{\varepsilon}}{g_{\varepsilon}}\psi_{y} \right|^{2} + \frac{|\psi_{y}|^{2}}{\varepsilon^{2}g_{\varepsilon}^{2}} \right) \,\mathrm{d}x\mathrm{d}y,\tag{1}$$

dom $h_{\varepsilon} = H^1(Q) \subset L^2(Q)$. Denote by H_{ε} the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● つくで

Pick bounded functions $g_{\varepsilon} : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_{\varepsilon}$ (uniformly).

Recall that Q_{ε} denotes the region below $\varepsilon g_{\varepsilon}(x)$. Consider the Neumann quadratic form

$$f_{\varepsilon}(\psi) = \int_{Q_{\varepsilon}} |\nabla \psi|^2 \, \mathrm{d}x \mathrm{d}y, \qquad \mathrm{dom} \, f_{\varepsilon} = H^1(Q_{\varepsilon}).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_{\varepsilon}(\psi) = \int_{Q} \left(\left| \psi' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}} \psi - y \frac{g'_{\varepsilon}}{g_{\varepsilon}} \psi_{y} \right|^{2} + \frac{|\psi_{y}|^{2}}{\varepsilon^{2} g_{\varepsilon}^{2}} \right) \, \mathrm{d}x \mathrm{d}y, \tag{1}$$

dom $h_{\varepsilon} = H^1(Q) \subset L^2(Q)$. Denote by H_{ε} the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.

Pick bounded functions $g_{\varepsilon} : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_{\varepsilon}$ (uniformly).

Recall that Q_{ε} denotes the region below $\varepsilon g_{\varepsilon}(x)$. Consider the Neumann quadratic form

$$f_{\varepsilon}(\psi) = \int_{Q_{\varepsilon}} |\nabla \psi|^2 \, \mathrm{d}x \mathrm{d}y, \qquad \mathrm{dom} \, f_{\varepsilon} = H^1(Q_{\varepsilon}).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_{\varepsilon}(\psi) = \int_{Q} \left(\left| \psi' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}}\psi - y\frac{g'_{\varepsilon}}{g_{\varepsilon}}\psi_{y} \right|^{2} + \frac{|\psi_{y}|^{2}}{\varepsilon^{2}g_{\varepsilon}^{2}} \right) \,\mathrm{d}x\mathrm{d}y,\tag{1}$$

dom $h_{\varepsilon} = H^1(Q) \subset L^2(Q)$. Denote by H_{ε} the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ つく⊙

• First a reduction of dimension. Consider again the subspace

 $\mathcal{L} = \left\{ w(x) \ 1 \mid w \in \mathrm{L}^2([a,\infty)) \right\} ,$

the one-dimensional quadratic form

$$t_{\varepsilon}(w) := h_{\varepsilon}(w \, 1) = \int_{a}^{\infty} \left| w' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}} w \right|^{2} \mathrm{d}x \,, \qquad \mathrm{dom} \, t_{\varepsilon} = H^{1}([a, \infty)), \tag{2}$$

and denote by T_{ε} the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

For g as above, one has

$$\left\| H_{\varepsilon}^{-1} - (T_{\varepsilon}^{-1} \oplus 0) \right\| \longrightarrow 0, \quad \varepsilon \to 0,$$

where 0 is the null operator on the subspace \mathcal{L}^{\perp} .

イロト イヨト イヨト イヨト

• First a reduction of dimension. Consider again the subspace

$$\mathcal{L} = \left\{ w(x) \, 1 \mid w \in \mathrm{L}^2([a,\infty)) \right\} \,,$$

the one-dimensional quadratic form

$$t_{\varepsilon}(w) := h_{\varepsilon}(w \, 1) = \int_{a}^{\infty} \left| w' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}} w \right|^{2} \mathrm{d}x \,, \qquad \mathrm{dom} \, t_{\varepsilon} = H^{1}([a, \infty)), \tag{2}$$

and denote by T_{ε} the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

For g as above, one has

$$\left\| H_{\varepsilon}^{-1} - (T_{\varepsilon}^{-1} \oplus 0) \right\| \longrightarrow 0, \quad \varepsilon \to 0,$$

where 0 is the null operator on the subspace \mathcal{L}^{\perp} .

イロト イヨト イヨト イヨト

• First a reduction of dimension. Consider again the subspace

$$\mathcal{L} = \left\{ w(x) \, 1 \mid w \in \mathrm{L}^2([a,\infty)) \right\} \,,$$

the one-dimensional quadratic form

$$t_{\varepsilon}(w) := h_{\varepsilon}(w \, 1) = \int_{a}^{\infty} \left| w' - \frac{g'_{\varepsilon}}{2g_{\varepsilon}} w \right|^{2} \mathrm{d}x \,, \qquad \mathrm{dom} \, t_{\varepsilon} = H^{1}([a, \infty)), \tag{2}$$

and denote by T_{ε} the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

For g as above, one has

$$\|H_{\varepsilon}^{-1} - (T_{\varepsilon}^{-1} \oplus 0)\| \longrightarrow 0, \quad \varepsilon \to 0,$$

where 0 is the null operator on the subspace \mathcal{L}^{\perp} .

3

15 / 25

・ロト ・日ト ・ヨト・

• T_{ε} is already **unidimensional**. The next task is the limit of T_{ε} .

Theorem (4)(based on Bedoya, deO & Verri)

Let $g: [a, \infty) \to \mathbb{R}$ be as above. Then: (A) The sequence T_{ε} converges in the strong resolvent sense to S (B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$\left\|T_{\varepsilon}^{-1} - S^{-1}\right\| \longrightarrow 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. j(a)w(a) = w'(a).

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへの

• T_{ε} is already **unidimensional**. The next task is the limit of T_{ε} .

Theorem (4)(based on Bedoya, deO & Verri)

Let $g: [a, \infty) \to \mathbb{R}$ be as above. Then: (A) The sequence T_{ε} converges in the strong resolvent sense to S. (B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$\left\|T_{\varepsilon}^{-1} - S^{-1}\right\| \longrightarrow 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. j(a)w(a) = w'(a).

• T_{ε} is already **unidimensional**. The next task is the limit of T_{ε} .

Theorem (4)(based on Bedoya, deO & Verri)

Let $g: [a, \infty) \to \mathbb{R}$ be as above. Then: (A) The sequence T_{ε} converges in the strong resolvent sense to S. (B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$\left\|T_{\varepsilon}^{-1} - S^{-1}\right\| \longrightarrow 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. j(a)w(a) = w'(a).

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ つく⊙

• T_{ε} is already **unidimensional**. The next task is the limit of T_{ε} .

Theorem (4)(based on Bedoya, deO & Verri)

Let $g: [a, \infty) \to \mathbb{R}$ be as above. Then: (A) The sequence T_{ε} converges in the strong resolvent sense to S. (B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$\left\|T_{\varepsilon}^{-1} - S^{-1}\right\| \longrightarrow 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. j(a)w(a) = w'(a).

In summary:

through such uniformly collapsing Q_ε we have recovered S (initially found from Kato-Robinson) as the effective operator.

Especially in case

$$j(x) = \frac{g'(x)}{2g(x)} \to 0, \quad x \to \infty,$$

there is a norm convergence

$$\left\| H_{\varepsilon}^{-1} - \left(S^{-1} \oplus 0 \right) \right\| \to 0.$$

(日) (四) (王) (王) (王) (王)

In summary:

through such uniformly collapsing Q_ε we have recovered S (initially found from Kato-Robinson) as the effective operator.

Especially in case

$$j(x) = \frac{g'(x)}{2g(x)} \to 0, \quad x \to \infty,$$

there is a norm convergence

$$\left\| H_{\varepsilon}^{-1} - \left(S^{-1} \oplus 0 \right) \right\| \to 0.$$

2 Collapsing regions

3 Effective operator

Uniformly collapsing approximations

э.

590

18 / 25

Class I. [Power law] Take $g(x) = \gamma x^{\beta}$, $\gamma, \beta > 0$, for $x \ge 1$.

Then a = 1 and $j(x) = \beta/(2x)$ vanishes at infinity. So, as $\varepsilon \to 0$, there is a norm resolvent convergence (in uniformly collapsing regions) to the effective operator

$$(Sw)(x) = -w''(x) + \frac{\beta(\beta-2)}{4x^2}w(x), \qquad \frac{\beta}{2}w(1) = w'(1).$$

César R. de Oliveira UFSCar

Nonuniformly Collapsing

QMath13 – Atlanta

590

19 / 25

(日) (四) (王) (王) (王) (王)

Class I. [Power law] Take $g(x) = \gamma x^{\beta}$, $\gamma, \beta > 0$, for $x \ge 1$.

Then a = 1 and $j(x) = \beta/(2x)$ vanishes at infinity. So, as $\varepsilon \to 0$, there is a norm resolvent convergence (in uniformly collapsing regions) to the effective operator

$$(Sw)(x) = -w''(x) + \frac{\beta(\beta-2)}{4x^2}w(x), \qquad \frac{\beta}{2}w(1) = w'(1).$$

César R. de Oliveira UFSCar

Note that for $g(x) = \gamma x^{\beta}$ the effective potential $\varrho(x) = \frac{\beta(\beta-2)}{4x^2}$:

• does not depend on γ ;

- vanishes for $\beta = 2$ and is proportional to x^{-2} for all values of β ;
- is negative for $0 < \beta < 2$ and positive for $\beta > 2$.

SOR

20 / 25

Note that for $g(x) = \gamma x^{\beta}$ the effective potential $\varrho(x) = \frac{\beta(\beta-2)}{4x^2}$:

- does not depend on γ ;
- vanishes for $\beta = 2$ and is proportional to x^{-2} for all values of β ;
- is negative for $0 < \beta < 2$ and positive for $\beta > 2$.

Note that for $g(x) = \gamma x^{\beta}$ the effective potential $\varrho(x) = \frac{\beta(\beta-2)}{4x^2}$:

- does not depend on γ ;
- vanishes for $\beta = 2$ and is proportional to x^{-2} for all values of β ;
- is negative for $0 < \beta < 2$ and positive for $\beta > 2$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● つくで

Class II. [Exponential of a power] For $x \ge 1$, consider $g(x) = \gamma e^{x^{\beta}}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \leq 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^{\beta}w)(x) := -w''(x) + \varrho^{\beta}(x)w(x), \qquad \frac{\beta}{2}w(1) = w'(1),$$
$$\varrho^{\beta}(x) := \frac{1}{4} \left(\frac{\beta^{2}}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}}\right).$$

By Theorem 4, if $0 < \beta < 1$, one has (in Q_{ε}) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.

Class II. [Exponential of a power] For $x \ge 1$, consider $g(x) = \gamma e^{x^{\beta}}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \le 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^{\beta}w)(x) := -w''(x) + \varrho^{\beta}(x)w(x), \qquad \frac{\beta}{2}w(1) = w'(1),$$
$$\varrho^{\beta}(x) := \frac{1}{4}\left(\frac{\beta^{2}}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}}\right).$$

By Theorem 4, if $0 < \beta < 1$, one has (in Q_{ε}) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.

with

Class II. [Exponential of a power] For $x \ge 1$, consider $g(x) = \gamma e^{x^{\beta}}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \le 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^{\beta}w)(x) := -w''(x) + \varrho^{\beta}(x)w(x), \qquad \frac{\beta}{2}w(1) = w'(1),$$
$$\varrho^{\beta}(x) := \frac{1}{4} \left(\frac{\beta^{2}}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}}\right).$$

By Theorem 4, if $0 < \beta < 1$, one has (in Q_{ε}) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.

~

Class II. [Exponential of a power] For $x \ge 1$, consider $g(x) = \gamma e^{x^{\beta}}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \le 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^{\beta}w)(x) := -w''(x) + \varrho^{\beta}(x)w(x), \qquad \frac{\beta}{2}w(1) = w'(1),$$
 with $\varrho^{\beta}(x) := \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}}\right).$

By Theorem 4, if $0 < \beta < 1$, one has (in Q_{ε}) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.

~

For "regions"
$$g(x) = \gamma e^{x^{\beta}}$$
, the effective potential $\varrho^{\beta}(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

• does not depend on γ ;

- for 0 < β < 1, it is bounded and vanishes at ∞. Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;
- for $\beta = 1$ (the exponentially thick region), it is constant and equals to 1/4, and so the transition point from norm to strong resolvent approximations.

22 / 25

For "regions"
$$g(x) = \gamma e^{x^{\beta}}$$
, the effective potential $\varrho^{\beta}(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

- does not depend on γ ;
- for 0 < β < 1, it is bounded and vanishes at ∞. Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;
- for $\beta = 1$ (the exponentially thick region), it is constant and equals to 1/4, and so the transition point from norm to strong resolvent approximations.

SOR

22 / 25

・ロト ・日ト ・ヨト ・ヨト

For "regions"
$$g(x) = \gamma e^{x^{\beta}}$$
, the effective potential $\varrho^{\beta}(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

- does not depend on γ ;
- for $0 < \beta < 1$, it is bounded and vanishes at ∞ . Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;
- for $\beta = 1$ (the exponentially thick region), it is constant and equals to 1/4, and so the transition point from norm to strong resolvent approximations.

Final remarks:

• The condition that j(x) is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

• For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \ge 1$, it follows that j(x) vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.

• Naturally, a spectral analysis should be undertaken ...

Final remarks:

• The condition that j(x) is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

• For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \ge 1$, it follows that j(x) vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.

• Naturally, a spectral analysis should be undertaken ...

23 / 25

Final remarks:

• The condition that j(x) is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

• For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \ge 1$, it follows that j(x) vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.

• Naturally, a spectral analysis should be undertaken ...

23 / 25

Final remarks:

• The condition that j(x) is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

- For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \ge 1$, it follows that j(x) vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.
- Naturally, a spectral analysis should be undertaken ...

Final remarks:

• The condition that j(x) is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

- For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \ge 1$, it follows that j(x) vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.
- Naturally, a spectral analysis should be undertaken ...

Examples

César R. de Oliveira UFSCar

Nonuniformly Collapsing

◆□ → ◆ (日) → ◆ (目) → ◆ (日) → ○ (1) → ○ (

Example

Thanks

Thank you.

César R. de Oliveira UFSCar

Nonuniformly Collapsing

QMath13 – Atlanta 25 / 25

590

(日) (四) (분) (분) (분) (분)